Diffractive and total pp cross sections at the LHC and beyond

Konstantin Goulianos

The Rockefeller University http://physics.rockefeller.edu/dino/myhtml/conference.html DIFFRACTION 2010 International Workshop on Diffraction in High-Energy Physics

CONTENTS

Q Introduction

- **□** Diffractive cross sections
- \Box The total cross section
- \Box Ratio of pomeron intercept to slope
- **□ Conclusions**

Diffractive pp/pp Processes

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 3

Basic and combined ("nested") diffractive processes

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 4

The problem: the Regge theory description violates unitarity at high *^s*

$$
\left| \left(\frac{d\sigma_{el}}{dt} \right)_{t=0} \sim \left(\frac{s}{s_o} \right)^{2\epsilon}, \quad \sigma_t \sim \left(\frac{s}{s_o} \right)^{\epsilon}, \quad \sigma_{sd} \sim \left(\frac{s}{s_o} \right)^{2\epsilon}
$$

 $\bm{\Box}$ d σ /dt $\sigma_{\rm sd}$ grows faster than $\sigma_{\rm t}$ as s increases **→** unitarity violation at high *s* (similarly for partial x-sections in impact parameter space)

the unitarity limit is already reached at √*s*~ 2 TeV

Standard Regge Theory

Global fit to $p^{\pm}p$, π^{\pm} , K^{\pm}p x-sections

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 7

Renormalization \rightarrow the key to diffraction in QCD

Diffractive gaps **definition:** gaps not exponentially suppressed

M² distribution: data \rightarrow do/dM²|_{t=-0.05} ~ independent of s over 6 orders of magnitude!

\rightarrow factorization breaks down to ensure M² scaling

Single diffraction renormalized – (1)

CORFU-2001: hep-ph/0203141

EDS 2009: http://arxiv.org/PS_cache/arxiv/pdf/1002/1002.3527v1.pdf

Single diffraction renormalized – (2)

$$
\text{factor}\left(\kappa = \frac{g_{IP-IP-IP}(t)}{\beta_{IP-p-p}} \approx 0.17\right)
$$

Experimentally: **KG&JM, PRD 59 (114017) 1999**

$$
\kappa = \frac{g_{IP-IP-IP}}{\beta_{IP-p}} = 0.17 \pm 0.02, \quad \varepsilon = 0.104
$$

QCD:
$$
\kappa = f_g \times \frac{1}{N_c^2 - 1} + f_q \times \frac{1}{N_c} \xrightarrow{Q^2 = 1} \approx 0.75 \times \frac{1}{8} + 0.25 \times \frac{1}{3} \cdot \boxed{0.18}
$$

Single diffraction renormalized - (3)

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_{\circ}}{16\pi} \sigma_{\circ}^{I\!P}p\right] \frac{s^{2\epsilon}}{N(s, s_o)} \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\n
$$
b = b_0 + 2\alpha' \ln \frac{s}{M^2} \qquad s_o^{\text{CMG}} = (3.7 \pm 1.5) \text{ GeV}^2
$$
\n
$$
N(s, s_o) \equiv \int_{\xi_{\text{min}}}^{\xi_{\text{max}}} d\xi \int_{t=0}^{-\infty} dt f_{I\!P/p}(\xi, t) \stackrel{s \to \infty}{\to} \sim s_o^{\epsilon} \frac{s^{2\epsilon}}{\ln s}
$$
\n
$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} \stackrel{s \to \infty}{\to} \sim \ln s \frac{e^{bt}}{(M^2)^{1+\epsilon}}
$$
\nset to unity\n
$$
\sigma_{sd} \xrightarrow{s \to \infty} \sim \frac{\ln s}{b \to \ln s} \Rightarrow const
$$
\n
$$
\text{determine } s_o
$$

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 14

Single diffraction renormalized – (4)

$$
\frac{d^2\sigma}{dt d\Delta y} = N_{gap} \cdot C \cdot F_p^2(t) \cdot \left\{ e^{(\varepsilon + \alpha' t) \Delta y} \right\}^2 \cdot \kappa \cdot \left\{ \sigma_o e^{\varepsilon \Delta y'} \right\}
$$
\n
$$
P_{gap}(\Delta y, t)
$$
\n
$$
N_{gap}^{-1}(s) = \int_{\Delta y, t} P_{gap}(\Delta y, t) d\Delta y dt \xrightarrow{s \to \infty} C' \cdot \frac{s^{2\varepsilon}}{\ln s}
$$
\n
$$
\frac{d^2\sigma}{dt d\Delta y} = C'' \left[e^{\varepsilon (\Delta y - \ln s)} \cdot \ln s \right] e^{(b_0 + 2\alpha' \Delta y)t}
$$
\n
$$
\Leftrightarrow \text{Grows slower than } s^{\varepsilon}
$$
\n
$$
\Rightarrow \text{Pumplin bound obeyed at all impact parameters}
$$

Scale s_0 and triple-pom coupling

Multigap diffraction

KG, hep-ph/0203141

Multigap cross sections

Gap survival probability

• Use the Froissart formula as a *saturated* cross section

$$
\sigma_t(s > s_F) = \sigma_t(s_F) + \frac{\pi}{m^2} \cdot \ln^2 \frac{s}{s_F}
$$

- This formula should be valid above the knee in σ_{sd} vs. \sqrt{s} at $\sqrt{s_F} = 22$ GeV (Fig. 1) and therefore valid at $\sqrt{s} = 1800 \text{ GeV}.$
- Use $m^2 = s_o$ in the Froissart formula multiplied by 1/0.389 to convert it to mb⁻¹.
- Note that contributions from Reggeon exchanges at $\sqrt{s} = 1800 \text{ GeV}$ are negligible, as can be verified from the global fit of Ref. [7].
- Obtain the total cross section at the LHC:

$$
\sigma_t^{\text{LHC}} = \sigma_t^{\text{CDF}} + \frac{\pi}{s_o} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right)
$$

SUPERBALL MODEL

$$
\frac{98 \pm 8 \text{ mb at 7 TeV}}{109 \pm 12 \text{ mb at 14 TeV}}
$$

σ^T at LHC from CMG global fit

σ^{sp} and ratio of α'/ε

PHYSICAL REVIEW D 80, 111901(R) (2009)

Pomeron intercept and slope: A QCD connection

Konstantin Goulianos

$$
\frac{d^2 \sigma_{sd}(s, M^2, t)}{dM^2 dt} = \left[\frac{\sigma_s}{16\pi} \sigma_s^{p_p} \right] \frac{s^{2\epsilon}}{N(s)} \frac{1}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\frac{s \to \infty}{\Rightarrow} \left[2\alpha' e^{(\epsilon b_0)/\alpha'} \sigma_s^{p_p} \right] \frac{\ln s^{2\epsilon}}{(M^2)^{1+\epsilon}} e^{bt}
$$
\n
$$
\sigma_{pp/pp}^{\text{tot}} = \sigma_s \cdot e^{\epsilon \Delta \eta}.
$$
\n
$$
\sigma_{sd}^{\infty} = 2\sigma_s^{p_p} \exp\left[\frac{\epsilon b_s}{2\alpha'} \right] = \sigma_s^{p_p}
$$
\n
$$
\sigma_{sd}^{\infty} = \frac{\epsilon b_s}{2\alpha'} = \frac{\epsilon b_s}{2\alpha'}
$$
\n
$$
\sigma_s^{\infty} = \frac{\epsilon b_s}{2\alpha'} + \frac{\epsilon b_s}{2\alpha'}
$$
\n
$$
\sigma_s^{\infty} = \frac{\epsilon b_s}{2\alpha'} + \frac{\epsilon b_s}{2\alpha'}
$$
\n
$$
\sigma_{\text{phono}}^{\infty} = 3.2 \pm 0.4 \text{ (GeV/c)}^{-2}
$$
\n
$$
\kappa = \frac{f_s^{\infty}}{N_c^2 - 1} + \frac{f_q^{\infty}}{N_c}
$$
\n
$$
r_{\text{exp}} = 0.25 \text{ (GeV/c)}^{-2} / 0.08 = 3.13 \text{ (GeV/c)}^{-2}
$$

Monte Carlo Strategy for the LHC

^σ**T**

optical theorem

dispersion relations

MONTE CARLO STRATEGY

- \Box σ ^T \rightarrow from SUPERBALL model
- **Q** optical theorem \rightarrow Im f_{el}(t=0)
- **Q** dispersion relations \rightarrow Re f_{el}(t=0) $Im f_{el}$ ($t=0$)
- \Box differential $\sigma^{SD} \rightarrow$ from RENORM $Re f_{el} (t=0)$
- **□ use nested pp final states for**

pp collisions at the IP - p sub-energy √s'

Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from:

K. Goulianos, Phys. Lett. B 193 (1987) 151 pp

"A new statistical description of hardonic and e+e[−] multiplicity distributions "

Dijets in γp at HERA from RENORM

K. Goulianos, POS (DIFF2006) 055 (p. 8)

SUMMARY

 \Box Froissart bound $\sigma \leq (\pi / m^2) \cdot \ln^2 s$

 \Box Valid above the "knee" at √s = 22 GeV in σ _τ^{sD} vs. √s and therefore valid at \sqrt{s} = 1.8 TeV of the CDF measurement

 \Box Use superball scale s₀ (saturated exchange) in the Froissart formula, where s_0 = 3.7±1.5 GeV²as determined from setting the integral of the Pomeron flux to unity at the "kneee" of $s\sqrt{s} = 22$ GeV

 \rightarrow m² = s₀ = (3.7±1.5 GeV²

At √s 1.8 TeV Reggeon contributions are negligible (see global fit)

 $\int_{14000}^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{2}$. $\ln^2 \frac{S}{S} - \ln^2 \frac{S}{S}$ = $(80.03 \pm 2.24) + (29 \pm 12) = 109 \pm 12 \text{ mb}$ \Box compatible with CGM-96 global fit result of 114 ± 5 mb \Box s $\frac{S_{\text{E}}}{S_{\text{E}}}$ – $\ln^2 \frac{S}{S_{\text{E}}}$ $\frac{\pi}{s_0}$. $\ln^2 \frac{s}{s_0}$ $\sigma_{14000}^{\text{LHC}} = \sigma_{1800}^{\text{CDF}} + \frac{\pi}{4}$ F $_2$ S^{CDF} F $_2$ S^{LHC} $\pmb{0}$ CDF 1800 LHC 14000 $\frac{1}{2}$ ₀ = $\sigma_{1800}^{\text{CDF}} + \frac{\pi}{s_0} \cdot \left(\ln^2 \frac{s^{\text{LHC}}}{s_F} - \ln^2 \frac{s^{\text{CDF}}}{s_F} \right) = (80.03 \pm 2.24) + (29 \pm 12) = 109 \pm 100$

$$
\Box \ \sigma_t = (98 \pm 8) \text{ mb at } 7 \text{ TeV} - \text{wait and see!}
$$

Diffractive dijets @ Tevatron

FDJJ(ξ,β,Q2) @ Tevatron

SD/ND dijet ratio vs. x_{Bi}@ CDF

10-310-210-1110-310 x (antiproton) -210-1 $\tilde{\mathsf{R}}(\mathsf{x})$ $β = 0.5$ ×1×2 \times 2 2 $\times 2^3$ $\times 2^4$ $\times 2^5$ <ξ> = 0.04 0.05 0.06 0.07 0.08 0.09 $Δξ = 0.01$ $E_T^{\text{Jet1,2}} > 7 \text{ GeV}$ | t | $<$ 1.0 GeV² stat. errors only $R(x) = \frac{F_{jj}^{SD}(x)}{F_{jj}^{ND}(x)}$ 10 $\frac{1}{2} \times 2^3 \rightarrow 2^3 \rightarrow 2^4 \$ CDF Run I

 $0.035 < \xi < 0.095$ Flat ξ dependence for $\beta \cdot 0.5$

$$
R(x) = x^{-0.45}
$$

Diffractive DIS @ HERA

J. Collins: factorization holds (but under what conditions?)

Results favor color reorganization

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 30

Vector meson production

DIFF. 2010, 09/10-15 Otranto, ITALY Diffractive and total x-sections at LHC and beyond K. Goulianos 31

Dijets in γp at HERA - 2008

□ 20-50 % apparent rise when E_T ^{jet} 5→10 GeV \rightarrow due to suppression at low E_T^{jet} !!!

QCD factorisation is a set of \mathbf{F} **→** same suppression for direct and resolved processes \square the reorganization diagram predicts: \rightarrow suppression at low Z_{IP}^{jets}, since larger Δη is available for particles

